Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate PfGW456L13_1889 Phosphogluconate dehydratase (EC 4.2.1.12)
Query= curated2:C4Z566 (557 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_1889 Length = 608 Score = 258 bits (659), Expect = 5e-73 Identities = 183/518 (35%), Positives = 264/518 (50%), Gaps = 42/518 (8%) Query: 29 MKKPMIGIVSSYNEIVPGHMNIDKIVNAVKLGVAE-------AGGVPVVFPAIAVCDGIA 81 M I IVSSYN+++ H + +K + E AGG P A+CDG+ Sbjct: 63 MNSANIAIVSSYNDMLSAHQPYEVFPELIKKALREIGSVGQFAGGTP------AMCDGVT 116 Query: 82 MGHVGMKYSLVTRDLIADSTECMAIAHQFDGLVMVPNCDKNVPGLLMAAARL-NLPTVFV 140 G GM+ SL +R++IA ST + FDG +++ CDK VPGL+M A R +LP +FV Sbjct: 117 QGEPGMELSLPSREVIALSTAVALSHNMFDGALLLGICDKIVPGLMMGALRFGHLPMIFV 176 Query: 141 SGGPMLAGHVKGKKRSLSSMFEAVGSYAAGTMTEEDVLEFEEKVCPTCGSCSGMYTANSM 200 GGPM++G +K + YA G T E++LE E K + G+C+ TAN+ Sbjct: 177 PGGPMVSGISNKQKADVRQ------KYAEGKATREELLESEMKSYHSPGTCTFYGTANTN 230 Query: 201 NCLTEALGMGLRGNGTIPAVYSERIKLAKHAGMAVMDMVNKG---ITARDIITKDSIMNA 257 L E +G+ L G + R L + A V + + + +I+ + S++N+ Sbjct: 231 QLLMEVMGLHLPGASFVNPNTPLRDALTREAAHQVTRLTKQNGDFMPIGEIVDERSLVNS 290 Query: 258 LTVDMALGCSTNSMLHLPAIAHEIGFDFDIKFANPISEKTPNLCHLAPAGPTYMEDLNEA 317 + A G STN LH+PAIA G + +SE P L H+ P G + A Sbjct: 291 IVALHATGGSTNHTLHMPAIAMAAGIQLTWQDMADLSEVVPTLSHVYPNGKADINHFQAA 350 Query: 318 GGVYAVMKELADIGLLNTDCLTVSGKTIGECIATAY--------------NRDPEVIRTV 363 GG+ +++EL + GLL+ + TV G + + + D ++R V Sbjct: 351 GGMSFLIRELLEAGLLHENVNTVMGHGLSRYTQEPFLDNGQLVWREGVTDSLDESILRPV 410 Query: 364 DNAYSKTGGLAVLSGNLAPDGSVVKRSAVVPEMLVHEGPARVFDSEEDAIAAIKGGKIVE 423 A+S GGL V+ GNL V+K SAV E + E PA VF ++D A K G + + Sbjct: 411 ARAFSAEGGLRVMEGNLG--RGVMKVSAVAVENQIVEAPAMVFQDQQDLADAFKAGLLEK 468 Query: 424 GDVVVIRYEGPKGGPGMREMLNPTSAIAGM-GLGSSVALITDGRFSGAS-RGASIGHVSP 481 V V+R++GP+ GM E+ T + + G VAL+TDGR SGAS + + HVSP Sbjct: 469 DFVAVMRFQGPRSN-GMPELHKMTPFLGVLQDRGFKVALVTDGRMSGASGKIPAAIHVSP 527 Query: 482 EAAVGGPIALVEEGDIISIDIPGLKLELKVSDEELAAR 519 EA VGG +A V+EGDII +D LELKV EE AAR Sbjct: 528 EAYVGGALARVQEGDIIRVDGVKGTLELKVDAEEFAAR 565 Lambda K H 0.317 0.134 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 873 Number of extensions: 55 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 557 Length of database: 608 Length adjustment: 36 Effective length of query: 521 Effective length of database: 572 Effective search space: 298012 Effective search space used: 298012 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory