Align Homocysteine/cysteine synthase; O-acetylserine/O-acetylhomoserine sulfhydrylase; OAS-OAH SHLase; OAS-OAH sulfhydrylase; EC 2.5.1.47; EC 2.5.1.49 (characterized)
to candidate Pf1N1B4_4890 Cystathionine gamma-lyase (EC 4.4.1.1)
Query= SwissProt::P06106 (444 letters) >lcl|FitnessBrowser__pseudo1_N1B4:Pf1N1B4_4890 Cystathionine gamma-lyase (EC 4.4.1.1) Length = 393 Score = 208 bits (530), Expect = 2e-58 Identities = 146/435 (33%), Positives = 226/435 (51%), Gaps = 58/435 (13%) Query: 2 PSHFDTVQLHAGQENPGDNAHRSRAVPIYATTSYVFENSKHGSQLFGLEVPGYVYSRFQN 61 P F T +HAGQ D + + PIYA ++Y+ ++ G+ G+ Y R N Sbjct: 10 PRGFATRVIHAGQTP--DPSTGALMPPIYANSTYLQQSP-------GVH-KGFDYGRSHN 59 Query: 62 PTSNVLEERIAALEGGAAALAVSSGQAAQTLAIQGLAHTGDNIVSTSYLYGGTYNQF-KI 120 PT LE +A LEGG A A +SG AA ++ L G +IVS + LYGGT+ F K+ Sbjct: 60 PTRFALERCVADLEGGTRAFAFASGLAAIANVLE-LLDAGAHIVSGNDLYGGTFRLFDKV 118 Query: 121 SFKRFGIEARFVEGDNPEEFEKVFDERTKAVYLETIGNPKYNVPDFEKIVAIAHKHGIPV 180 + G FV+ + FE ++ T+ V++ET NP ++ D + + I + GI Sbjct: 119 RRRSAGHRFSFVDLTDLAAFEAALEDDTRMVWVETPSNPLLSLTDLDAVARICRQRGIIC 178 Query: 181 VVDNTFGAGGYFCQPIKYGADIVTHSATKWIGGHGTTIGGIIVDSGKFPWKDYPEKFPQF 240 V DNTF A + +P++ G DIV HS TK++ GH IGGI V Sbjct: 179 VADNTF-ASPWIQRPLELGFDIVLHSTTKYLNGHSDVIGGIAV----------------- 220 Query: 241 SQPAEGYHGTIYNEAYGNLAYIVHVRTELLRDLGPLMNPFASFLLLQGVETLSLRAERHG 300 G A + L +G + PF +FL L+GV+TL+LR ERH Sbjct: 221 ---------------VGQNAELAERLGFLQNAVGAIAGPFDAFLTLRGVKTLALRMERHC 265 Query: 301 ENALKLAKWLEQSPYVSWVSYPGLASHSHHENAKKYLSNGFGGVLSFGVKDLPNADKETD 360 NAL+LA+WLE+ P V+ V YPGL SH HE A++ + GFGG++S + N+D Sbjct: 266 SNALELAQWLERQPQVARVYYPGLPSHPQHELARRQM-RGFGGMISLDL----NSD---- 316 Query: 361 PFKLSGA-QVVDNLKLASNLANVGDAKTLVIAPYFTTHKQLNDKEKLASGVTKDLIRVSV 419 L+GA + ++++++ + ++G ++L+ P TH + + + G+ L+R+SV Sbjct: 317 ---LAGAKRFLESVRIFALAESLGGVESLIEHPAIMTHASIPVETRAQLGIGDALVRLSV 373 Query: 420 GIEFIDDIIADFQQS 434 G+E ++D+ AD Q+ Sbjct: 374 GVEDVEDLRADLAQA 388 Lambda K H 0.317 0.136 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 421 Number of extensions: 29 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 444 Length of database: 393 Length adjustment: 32 Effective length of query: 412 Effective length of database: 361 Effective search space: 148732 Effective search space used: 148732 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory