Align Glutamyl-tRNA(Gln) amidotransferase subunit A; Glu-ADT subunit A; EC 6.3.5.7 (uncharacterized)
to candidate AO356_18110 AO356_18110 amidase
Query= curated2:A7NKM0 (490 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_18110 Length = 471 Score = 181 bits (459), Expect = 5e-50 Identities = 158/486 (32%), Positives = 224/486 (46%), Gaps = 56/486 (11%) Query: 7 LTVAQAREMLARGEISSLELTDALLTRIAAVEPKVRAFL-VVDAAGARAQARAADARRAA 65 LT+ + +L RG ++S+ L + L RIA ++ A + + R QAR AD Sbjct: 7 LTLREMAGLLRRGVLTSVTLLEFYLQRIAERNRQINALIQLAPVEDLRRQAREADEMARI 66 Query: 66 GDAS-PLLGIPMGIKDVISTQGLRTTCASKMLENYTPVYDATAVARLKAAGAVILGKLNC 124 G S PL GIP+ +KDV+ +G + + L DATAVARL+ AGA+ILG N Sbjct: 67 GQISGPLHGIPITVKDVLHVRGFKMSRGVGELMGDVSQEDATAVARLRQAGAIILGISNV 126 Query: 125 DEFAMGSSTENSAFQQTRNPWNLERVPGGSSGGSAAAVAAGEAPAALGTDTGGSIRQPAA 184 E M TEN + +T NP +L R GGSSGG AAA+AAG +PA L +D GS+R PA Sbjct: 127 PELCMAFETENLIYGRTLNPHDLLRSAGGSSGGEAAAIAAGCSPAGLASDACGSVRIPAH 186 Query: 185 LCGITGLKPTYGRV--------SRYGLVAFASSLDQIGPMARTVRDCAIVLRVIAGADPF 236 GI GLK T GRV R GL S+ G M R V D A++ +I+GAD Sbjct: 187 FNGICGLKLTQGRVPLTGQFPNDRSGLFHLTSA---FGVMGRYVDDLALLGPLISGADGH 243 Query: 237 DATCTDYPAPDYEAALTGDIRGLRIGVPREYFVAGMQPDVEAAVRTAIE----VLREQGA 292 D D P A + + LRI + F A + V AAV ++ L Sbjct: 244 DPDTVDVP-----FAASEPLADLRIAL----FSASSRTPVSAAVSQVLQQVERCLSPVVT 294 Query: 293 EVCEISLPHTPYALPVYY--LIAPAEASANLAR-FDGVRYGLRVPGESYFDELERTRGAG 349 +V E++ P A V + I A+A R F+ + P + ++ Sbjct: 295 QVSEVAPPMLDEACDVLWRVFITGADAGRGWRRLFESMNKRSFTPAIAQLLDMSEAVELS 354 Query: 350 FGPEVRRRIMLGTYALSAGYYDAYYKRAQQVRTLIRRDYQQAFEQVDVIAAPTTPTVAFK 409 R IM+ T+ R + F+Q D+ P P VAF+ Sbjct: 355 VDEVKRDWIMIDTF---------------------RYQLAKFFKQHDLFICPVFPDVAFR 393 Query: 410 IGAHTDDPLAMYLEDVCTLPLNLAGLPGLVVPCGF--AEGLPIGLQLIGRAFDEESLLRV 467 GA +D + P +L+G P +V+ G + G+PIG+Q++G + EE LL V Sbjct: 394 HGASLED----RDQYAFVFPFSLSGSPAVVIRAGVDPSTGMPIGIQIVGPHWQEERLLAV 449 Query: 468 GDAYQR 473 +R Sbjct: 450 AAFLER 455 Lambda K H 0.320 0.136 0.398 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 527 Number of extensions: 31 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 490 Length of database: 471 Length adjustment: 34 Effective length of query: 456 Effective length of database: 437 Effective search space: 199272 Effective search space used: 199272 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory