GapMind for Amino acid biosynthesis

 

Alignments for a candidate for glyA in Pseudomonas fluorescens FW300-N2E2

Align glycine hydroxymethyltransferase (EC 2.1.2.1) (characterized)
to candidate Pf6N2E2_5295 Serine hydroxymethyltransferase (EC 2.1.2.1)

Query= BRENDA::B4ECY9
         (415 letters)



>FitnessBrowser__pseudo6_N2E2:Pf6N2E2_5295
          Length = 412

 Score =  540 bits (1392), Expect = e-158
 Identities = 263/408 (64%), Positives = 326/408 (79%), Gaps = 1/408 (0%)

Query: 8   TIANVDPEIFAAIEQENRRQEDHIELIASENYTSPAVMAAQGSQLTNKYAEGYPGKRYYG 67
           ++ N DP +   I++E  RQE H+ELIASENY S  V+ AQGS LTNKYAEGYPGKRYYG
Sbjct: 2   SLQNFDPTLARLIDRERNRQETHLELIASENYVSEEVLQAQGSVLTNKYAEGYPGKRYYG 61

Query: 68  GCEYVDVVEQLAIDRVKQLFGAEAANVQPNSGSQANQGVFFAMLKPGDTIMGMSLAHGGH 127
           GC+ VD +E LAI+R ++LF  E  NVQP+SGSQANQ VF A+L+PGDTI+GMSLAHGGH
Sbjct: 62  GCKVVDEIENLAIERARKLFNCEYVNVQPHSGSQANQAVFLAVLEPGDTILGMSLAHGGH 121

Query: 128 LTHGSPVNMSGKWFNVVSYGLN-ENEDIDYDAAEKLANEHKPKLIVAGASAFALKIDFER 186
           LTHG+ VN SGK +   SYGL+ E E +DY+  E LA EH+PK+I+AGASA++  IDF+R
Sbjct: 122 LTHGASVNFSGKIYRAFSYGLDTETETLDYEEMEALAREHRPKMIIAGASAYSRTIDFQR 181

Query: 187 LAKIAKSVGAYLMVDMAHYAGLIAAGVYPNPVPHADFVTTTTHKSLRGPRGGVILMKAEY 246
             KI   +GAYLMVDMAHYAGLIAAGVYP+PV  ADF+T+TTHK+LRGPRGG+IL KA+Y
Sbjct: 182 FRKICDEIGAYLMVDMAHYAGLIAAGVYPSPVGIADFITSTTHKTLRGPRGGLILAKAQY 241

Query: 247 EKPINSAIFPGIQGGPLMHVIAAKAVAFKEALSPEFKEYQQKVVENARVLAETLVKRGLR 306
              ++  IFP  QGGPLMHVIAAKAVAF EAL   FK YQQ+V++NARV+A+ L +RGLR
Sbjct: 242 GALLDKTIFPVYQGGPLMHVIAAKAVAFNEALGDGFKHYQQRVIDNARVMADVLTRRGLR 301

Query: 307 IVSGRTESHVMLVDLRAKHITGKAAEAALGAAHITVNKNAIPNDPEKPFVTSGIRLGSPA 366
           +VSG T+ H+ L+DLR+ +ITGK AEA L +AHIT+NKNAIPNDP+KP +TSGIR+G+PA
Sbjct: 302 VVSGGTDCHMFLLDLRSMNITGKDAEALLESAHITLNKNAIPNDPQKPAITSGIRIGTPA 361

Query: 367 MTTRGFGPAEAEQVGNLIADVLENPEDAATIERVRAQVAELTKRFPVY 414
           +TTRGFG AE  +V NLIAD+LE P++AA ++  R +V  L + FPVY
Sbjct: 362 LTTRGFGEAECAEVANLIADLLEQPDNAARLDNTRRRVMHLCECFPVY 409


Lambda     K      H
   0.316    0.132    0.376 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 519
Number of extensions: 13
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 415
Length of database: 412
Length adjustment: 31
Effective length of query: 384
Effective length of database: 381
Effective search space:   146304
Effective search space used:   146304
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory