Align ATP phosphoribosyltransferase; ATP-PRT; ATP-PRTase; EC 2.4.2.17 (uncharacterized)
to candidate 209044 DVU0114 ATP phosphoribosyltransferase
Query= curated2:B8DQ42 (293 letters) >MicrobesOnline__882:209044 Length = 293 Score = 511 bits (1315), Expect = e-149 Identities = 257/293 (87%), Positives = 272/293 (92%) Query: 1 MSGNNMLKIGIPKGSLEEATVNLFARSGWKIRKHHRNYFPEINDPELTARLCRVQEIPRY 60 MS +K+GIPKGSLEEAT+NL ARSGWKIRKHHRNYFPEINDPELTARLCRVQEIPRY Sbjct: 1 MSIRTPMKLGIPKGSLEEATINLLARSGWKIRKHHRNYFPEINDPELTARLCRVQEIPRY 60 Query: 61 LEDGVLDVGLTGKDWLLETGADVVTVSDLVYSKVSNRPARWVLAVAGDSPYVRPEDLAGC 120 +EDG+LDVGLTGKDWLLETG+DVV VSDLVYSKVSNRPARWVLAVAGDSPY RPEDLAG Sbjct: 61 IEDGILDVGLTGKDWLLETGSDVVVVSDLVYSKVSNRPARWVLAVAGDSPYTRPEDLAGK 120 Query: 121 TIATELLGVTRRYFEDAGIPVKVQYSWGATEAKVVEGLADAIVEVTETGTTIKAHGLRII 180 IATELLGVT+RYF DAGI V VQYSWGATEAKVVEGLADAIVEVTETGTTIKAHGLRII Sbjct: 121 RIATELLGVTKRYFADAGIEVNVQYSWGATEAKVVEGLADAIVEVTETGTTIKAHGLRII 180 Query: 181 AEVLLTNTVLIAGKAAWADPWKRAKIEQIDLLLQGALRADSLVGLKMNVPAHNLDAVLDQ 240 +EVLLTNTVLIA +AAW DP +R KIEQIDLLLQGALRADSLVGLKMNVP LDAVLDQ Sbjct: 181 SEVLLTNTVLIANRAAWEDPCRRRKIEQIDLLLQGALRADSLVGLKMNVPTRCLDAVLDQ 240 Query: 241 LPSLNSPTVAGLRDSTWYAVEIVVENDLVRDLIPRLRAAGAEGIIEYSLNKVI 293 LPSLNSPTVAGLRD+TW+AVEIVV+N +VRDLIPRLR AGAEGIIEY+LNKVI Sbjct: 241 LPSLNSPTVAGLRDNTWFAVEIVVDNGVVRDLIPRLREAGAEGIIEYALNKVI 293 Lambda K H 0.318 0.136 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 453 Number of extensions: 24 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 293 Length of database: 293 Length adjustment: 26 Effective length of query: 267 Effective length of database: 267 Effective search space: 71289 Effective search space used: 71289 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 48 (23.1 bits)
Align candidate 209044 DVU0114 (ATP phosphoribosyltransferase)
to HMM TIGR00070 (hisG: ATP phosphoribosyltransferase (EC 2.4.2.17))
# hmmsearch :: search profile(s) against a sequence database # HMMER 3.3.1 (Jul 2020); http://hmmer.org/ # Copyright (C) 2020 Howard Hughes Medical Institute. # Freely distributed under the BSD open source license. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # query HMM file: ../tmp/path.aa/TIGR00070.hmm # target sequence database: /tmp/gapView.27141.genome.faa # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Query: TIGR00070 [M=183] Accession: TIGR00070 Description: hisG: ATP phosphoribosyltransferase Scores for complete sequences (score includes all domains): --- full sequence --- --- best 1 domain --- -#dom- E-value score bias E-value score bias exp N Sequence Description ------- ------ ----- ------- ------ ----- ---- -- -------- ----------- 2.7e-55 173.1 0.0 3.4e-55 172.8 0.0 1.1 1 lcl|MicrobesOnline__882:209044 DVU0114 ATP phosphoribosyltransf Domain annotation for each sequence (and alignments): >> lcl|MicrobesOnline__882:209044 DVU0114 ATP phosphoribosyltransferase # score bias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc --- ------ ----- --------- --------- ------- ------- ------- ------- ------- ------- ---- 1 ! 172.8 0.0 3.4e-55 3.4e-55 1 183 [] 7 192 .. 7 192 .. 0.98 Alignments for each domain: == domain 1 score: 172.8 bits; conditional E-value: 3.4e-55 TIGR00070 1 lriAlpKGrleeetlkllekaglklskkeerkliasaedeevevlllrakdiptyvekgaadlGitGkDlleEseadvv 79 +++++pKG+lee t++ll+++g+k++k++ r+++ +++d+e+++ l+r ++ip+y+e+g++d+G+tGkD+l E ++dvv lcl|MicrobesOnline__882:209044 7 MKLGIPKGSLEEATINLLARSGWKIRKHH-RNYFPEINDPELTARLCRVQEIPRYIEDGILDVGLTGKDWLLETGSDVV 84 689**************************.************************************************* PP TIGR00070 80 elldlgfgkc.....klvlAvpeesdvesledlkegkriATkypnltreylekkgvkveivkleGavElapllgladaI 153 + dl ++k ++vlAv +s+++++edl+ gkriAT+ +t++y+++ g++v++ ++Ga+E++++ gladaI lcl|MicrobesOnline__882:209044 85 VVSDLVYSKVsnrpaRWVLAVAGDSPYTRPEDLA-GKRIATELLGVTKRYFADAGIEVNVQYSWGATEAKVVEGLADAI 162 *****9988777777*******************.9******************************************* PP TIGR00070 154 vDivetGttLrengLkiieeilessarlia 183 v ++etGtt++++gL+ii+e+l ++++lia lcl|MicrobesOnline__882:209044 163 VEVTETGTTIKAHGLRIISEVLLTNTVLIA 192 ****************************96 PP Internal pipeline statistics summary: ------------------------------------- Query model(s): 1 (183 nodes) Target sequences: 1 (293 residues searched) Passed MSV filter: 1 (1); expected 0.0 (0.02) Passed bias filter: 1 (1); expected 0.0 (0.02) Passed Vit filter: 1 (1); expected 0.0 (0.001) Passed Fwd filter: 1 (1); expected 0.0 (1e-05) Initial search space (Z): 1 [actual number of targets] Domain search space (domZ): 1 [number of targets reported over threshold] # CPU time: 0.01u 0.00s 00:00:00.01 Elapsed: 00:00:00.00 # Mc/sec: 8.75 // [ok]
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory