GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Desulfovibrio vulgaris Hildenborough

Align acetylornithine transaminase (EC 2.6.1.11); 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate 207835 DVU2347 acetylornithine aminotransferase

Query= BRENDA::B1XNF8
         (418 letters)



>MicrobesOnline__882:207835
          Length = 399

 Score =  305 bits (780), Expect = 2e-87
 Identities = 162/396 (40%), Positives = 239/396 (60%), Gaps = 13/396 (3%)

Query: 21  DQYVMHTYGRFPVAIAKGEGCRLWDTEGKSYLDFVAGIATCTLGHAHPALIQAVSAQIQK 80
           +  +  TYGR+P+++ + EG R+WD EG+ Y+D ++GIA  +LGH HP L + ++ Q +K
Sbjct: 13  ESLLCRTYGRYPISVQRAEGSRMWDHEGREYIDLLSGIAVTSLGHCHPELAEVMARQARK 72

Query: 81  LHHISNLYYIPEQGALAQWIVEHSCADKVFFCNSGAEANEAAIKLVRKYAHTVSDFLEQP 140
           L H+SNL+Y  EQ  LA+ ++      K FFCNSGAEANEAAIKL R+Y   V   ++  
Sbjct: 73  LVHVSNLFYQEEQLDLAEKLLSTLHCTKAFFCNSGAEANEAAIKLARRYMQRVRG-VDAH 131

Query: 141 VILSAKSSFHGRTLATITATGQPKYQKHFDPLPDGFAYVPYNDIRALEEAITDIDEGNRR 200
            +++   +FHGRTLAT+ ATGQ ++Q  F P+P GF    + DI AL  AIT        
Sbjct: 132 EVVTLTGAFHGRTLATVAATGQERFQDGFAPMPAGFRQAEWGDIDALRAAITP------A 185

Query: 201 VAAIMLEALQGEGGVRPGDVEYFKAVRRICDENGILLVLDEVQVGVGRTGKYWGYENLGI 260
            A +++E +QGEGGVRP   +Y +AV  +C E G+LL++DE+Q G+ RTG++W +++ G+
Sbjct: 186 TAGVLVEMVQGEGGVRPMTQDYARAVADLCREKGVLLMVDEIQTGLCRTGRFWAHQHYGV 245

Query: 261 EPDIFTSAKGLAGGIPIGAMMCKDSCAV-FNPGEHASTFGGNPFSCAAALAVVETLEQEN 319
           EPDI TSAK LA G+P+GAMM  D  A  F  G HA+TFG      + A A ++ ++++ 
Sbjct: 246 EPDIVTSAKALANGLPMGAMMTTDEVAQGFVAGSHATTFGAGALVSSVAAATLDIMKRDR 305

Query: 320 LLENVNARGEQLRAGLKTLAEKYP-YFSDVRGWGLINGMEIKADLELTSIEVVKAAMEKG 378
           L E   A G +     + +  K P    +VRG+GL+ G+     L  +  EV K  + +G
Sbjct: 306 LDERATAVGGRAMERFRAIGAKLPGTIEEVRGYGLMIGIV----LTFSGKEVWKELVARG 361

Query: 379 LLLAPAGPKVLRFVPPLIVSAAEINEAIALLDQTLA 414
            +      KVLR VP L +  A++      L+  LA
Sbjct: 362 FVCNNTQEKVLRLVPALTIDEADLTAFADTLEDILA 397


Lambda     K      H
   0.319    0.136    0.406 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 374
Number of extensions: 17
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 418
Length of database: 399
Length adjustment: 31
Effective length of query: 387
Effective length of database: 368
Effective search space:   142416
Effective search space used:   142416
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory