Align asparagine synthetase B, glutamine-hydrolyzing; EC 6.3.5.4 (characterized)
to candidate WP_011382566.1 AMB_RS00600 asparagine synthase (glutamine-hydrolyzing)
Query= CharProtDB::CH_002444 (554 letters) >NCBI__GCF_000009985.1:WP_011382566.1 Length = 639 Score = 152 bits (384), Expect = 4e-41 Identities = 131/395 (33%), Positives = 189/395 (47%), Gaps = 59/395 (14%) Query: 1 MCSIFGVFDIKTDAVELRKKALELSRLMRHRGPDWSGIYASDNAILAHERLSIVDVNAGA 60 MC IFG+ VE A + + HRGPD +GI+A L + RL++VD G+ Sbjct: 1 MCGIFGMVRGGGRPVESNVLAA-MKTALHHRGPDGNGIFAEGPVGLGNTRLAVVDTAGGS 59 Query: 61 QPLYNQQKTHVLAVNGEIYNHQALRAEYGD-RYQFQTGSDCEVILALYQEKGPEFLDDLQ 119 QP+ + + NGE++NH LRAE + F+T SD EV+LA + G + + Sbjct: 60 QPVIDPSSGAAIVYNGELFNHLELRAELESVGWCFRTHSDTEVVLAAFCVWGEDCVLRFN 119 Query: 120 GMFAFALYDSEKDAYLIGRDHLGIIPLYMGYDEHGQLYVASEMKALVPVCRT-------- 171 GM+AFA++D + I RD GI PLY+ G L ASE KAL+P+ Sbjct: 120 GMYAFAVFDPKARRVFIARDPAGIKPLYLTETADG-LAFASEAKALLPIAGRRPDWQALW 178 Query: 172 -----------------IKEFPAGSYLWSQDGEIRSY------YHRDWFDYDAVKDNVTD 208 I +FPAGS W D E+ + Y + F A Sbjct: 179 GYLTYGYMAPDCSPFAGITKFPAGSLAWI-DLELPAARLAVRPYWQPRFGCGAPLAEGEA 237 Query: 209 KNELRQALEDSVKSHLMSDVPYGVLLSGGLDSSIISAITKKYAARRVEDQERSEAWWPQL 268 + L L +VK LMSDVP G+ LSGGLDSS ++ YAARR +A + Sbjct: 238 VDRLDALLSQAVKHELMSDVPVGLFLSGGLDSSAVA----YYAARR-----HGQA----I 284 Query: 269 HSFAVGLPGS--PDLKAAQEVANHLGTVHHEIHFT---VQEGLDAIRDVIYHIETYDVTT 323 SF + + + A+ VA HLG H E+ F+ V+EGL + + + E + +T Sbjct: 285 SSFGLAFEETTHDESNDARTVARHLGIEHKELMFSPALVREGLRRVTETM--DEPFGDST 342 Query: 324 IRASTPMYLMSRKIKAMGIKMVLSGEGSDEVFGGY 358 + P+ ++SR + + +VL+G G DEV GY Sbjct: 343 V---VPLLMLSRFARE-HVTVVLTGWGGDEVLAGY 373 Score = 39.7 bits (91), Expect = 4e-07 Identities = 25/82 (30%), Positives = 43/82 (52%), Gaps = 3/82 (3%) Query: 381 LHMYDCARANKAMSAWGVEARVPFLDKKFLDVAMRINPQDKMCGNGKMEKHILRECFEAY 440 LH +A++ A +EARVP L+K+ LD A+ + KM G K +L++ + Sbjct: 490 LHGNGLFQADRMTMAASLEARVPLLNKQMLDFALPLPAGLKMAGG--TPKGLLKKALAPH 547 Query: 441 LPASVAWRQKEQFSDGVGYSWI 462 LP ++ + K+ F G+ W+ Sbjct: 548 LPPAILSKPKKGFGPPSGH-WV 568 Lambda K H 0.319 0.135 0.407 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 812 Number of extensions: 43 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 2 Length of query: 554 Length of database: 639 Length adjustment: 37 Effective length of query: 517 Effective length of database: 602 Effective search space: 311234 Effective search space used: 311234 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory