GapMind for Amino acid biosynthesis

 

Alignments for a candidate for DAPtransferase in Magnetospirillum magneticum AMB-1

Align LL-diaminopimelate aminotransferase; DAP-AT; DAP-aminotransferase; LL-DAP-aminotransferase; EC 2.6.1.83 (characterized)
to candidate WP_011386083.1 AMB_RS18860 pyridoxal phosphate-dependent aminotransferase

Query= SwissProt::Q2RK33
         (390 letters)



>NCBI__GCF_000009985.1:WP_011386083.1
          Length = 410

 Score =  360 bits (923), Expect = e-104
 Identities = 168/384 (43%), Positives = 247/384 (64%), Gaps = 3/384 (0%)

Query: 6   RIRELPPYLFARIEKKIAEARERGVDIISLGIGDPDMPTPSHVIDKLVAEAHNPENHRYP 65
           RI+ LPPY+FA +    A AR  G DII  G+G+PD PTP+H++DKLV  A NP  HRY 
Sbjct: 9   RIKRLPPYVFAEVNAMKARARAAGEDIIDFGMGNPDQPTPAHIVDKLVEAARNPRAHRYS 68

Query: 66  TSEGLLAFRQAVADWYQRLYGVDLDPRREVVTLIGSKEGIAHISLCYVDPGDINLVPDPG 125
            S G+   R+A++ +YQR + VD+DP  E +  +GSKEG+A+++     PGDI LVP+P 
Sbjct: 69  MSRGIPGLRKALSGYYQRRFAVDIDPETECIVTLGSKEGLANLANAITSPGDIVLVPNPS 128

Query: 126 YPVYNIGTLLAGGESYFMPLTAANGFLPDLGAIPSDVARRAKLMFINYPNNPTGAVADLK 185
           YP++  G ++AGG   F+P+T    FL  L         +   + +NYP+NPT  +ADL 
Sbjct: 129 YPIHPYGFIIAGGSCRFVPVTPDAEFLKALDRAVRHSVPKPIALVLNYPSNPTALLADLD 188

Query: 186 FFQEVVEFARSYDLIVCHDAAYSEITYDGYRAPSFLQAPGAKEVGIEFNSVSKPYNMTGW 245
           F+ +VVEF R + + +  D AYSEI +D    PS LQ PGAKE+ +EF S+SK YNM GW
Sbjct: 189 FYGQVVEFCRHHGIWILSDLAYSEIYFDVAPPPSILQIPGAKEIAVEFTSMSKTYNMPGW 248

Query: 246 RLGWACGRADVIEALARIKSNIDSGAFQAVQYAGIAALTGPQEGLAEVRRVYQERRDIIV 305
           R+G+A G   +I AL RIKS +D GAF  +Q A  AAL GPQ+ + ++R +Y+ RRD ++
Sbjct: 249 RIGFAAGNKTLIAALGRIKSYLDYGAFTPIQVAATAALNGPQDCVDDIRALYKGRRDALI 308

Query: 306 EGFNSLGWHLEKPKATFYVWAPVPRGYT---SASFAEMVLEKAGVIITPGNGYGNYGEGY 362
           EG ++ GW +  P AT + WAP+P+ +    S  F+++++ +A V + PG G+G YG+ +
Sbjct: 309 EGLSAAGWEIPSPPATMFAWAPIPKAFAHLGSLEFSKLLMREAQVAVAPGIGFGEYGDSH 368

Query: 363 FRIALTISKERMQEAIERLRRVLG 386
            RI L  + +R ++A+  ++  LG
Sbjct: 369 VRIGLVENVQRTRQAVRNIKTFLG 392


Lambda     K      H
   0.320    0.139    0.421 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 458
Number of extensions: 16
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 390
Length of database: 410
Length adjustment: 31
Effective length of query: 359
Effective length of database: 379
Effective search space:   136061
Effective search space used:   136061
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory