GapMind for Amino acid biosynthesis

 

L-isoleucine biosynthesis

Analysis of pathway ile in 35 genomes

Genome Best path
Acidovorax sp. GW101-3H11 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Azospirillum brasilense Sp245 cimA, leuC, leuD, leuB, ilvI, ilvH, ilvC, ilvD, ilvE
Bacteroides thetaiotaomicron VPI-5482 cimA, leuC, leuD, leuB, ilvI, ilvH, ilvC, ilvD, ilvE
Burkholderia phytofirmans PsJN ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Caulobacter crescentus NA1000 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Cupriavidus basilensis 4G11 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Dechlorosoma suillum PS ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Desulfovibrio vulgaris Hildenborough cimA, leuC, leuD, leuB, ilvI, ilvH, ilvC, ilvD, ilvE
Desulfovibrio vulgaris Miyazaki F cimA, leuC, leuD, leuB, ilvI, ilvH, ilvC, ilvD, ilvE
Dinoroseobacter shibae DFL-12 cimA, leuC, leuD, leuB, ilvI, ilvH, ilvC, ilvD, ilvE
Dyella japonica UNC79MFTsu3.2 ilvA, ilvI?, ilvH, ilvC, ilvD, ilvE
Echinicola vietnamensis KMM 6221, DSM 17526 cimA, leuC, leuD, leuB, ilvI, ilvH, ilvC, ilvD, ilvE
Escherichia coli BW25113 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Herbaspirillum seropedicae SmR1 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Klebsiella michiganensis M5al ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Magnetospirillum magneticum AMB-1 cimA, leuC, leuD, leuB, ilvI, ilvH, ilvC, ilvD, ilvE
Marinobacter adhaerens HP15 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Paraburkholderia bryophila 376MFSha3.1 ilvA*, ilvI, ilvH, ilvC, ilvD, ilvE
Pedobacter sp. GW460-11-11-14-LB5 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Phaeobacter inhibens BS107 cimA, leuC, leuD, leuB, ilvI, ilvH, ilvC, ilvD, ilvE
Pseudomonas fluorescens FW300-N1B4 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Pseudomonas fluorescens FW300-N2C3 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Pseudomonas fluorescens FW300-N2E2 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Pseudomonas fluorescens FW300-N2E3 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Pseudomonas fluorescens GW456-L13 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Pseudomonas putida KT2440 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Pseudomonas simiae WCS417 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Pseudomonas stutzeri RCH2 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Shewanella amazonensis SB2B ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Shewanella loihica PV-4 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Shewanella oneidensis MR-1 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Shewanella sp. ANA-3 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Sinorhizobium meliloti 1021 cimA, leuC, leuD, leuB, ilvI, ilvH, ilvC, ilvD, ilvE
Sphingomonas koreensis DSMZ 15582 ilvA, ilvI, ilvH, ilvC, ilvD, ilvE
Synechococcus elongatus PCC 7942 cimA, leuC, leuD, leuB, ilvI, ilvH, ilvC, ilvD, ilvE

Confidence: high confidence medium confidence low confidence
? – known gap: despite the lack of a good candidate for this step, this organism (or a related organism) performs the pathway

This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory