GapMind for catabolism of small carbon sources

 

Protein RR42_RS22745 in Cupriavidus basilensis 4G11

Annotation: RR42_RS22745 phosphoribosylglycinamide formyltransferase

Length: 386 amino acids

Source: Cup4G11 in FitnessBrowser

Candidate for 9 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
4-hydroxybenzoate catabolism ackA med Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized) 59% 95% 406 phosphoribosylglycinamide formyltransferase monomer 60% 418.3
L-lactate catabolism ackA med Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized) 59% 95% 406 phosphoribosylglycinamide formyltransferase monomer 60% 418.3
acetate catabolism ackA med Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized) 59% 95% 406 phosphoribosylglycinamide formyltransferase monomer 60% 418.3
2'-deoxyinosine catabolism ackA med Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized) 59% 95% 406 phosphoribosylglycinamide formyltransferase monomer 60% 418.3
2-deoxy-D-ribose catabolism ackA med Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized) 59% 95% 406 phosphoribosylglycinamide formyltransferase monomer 60% 418.3
ethanol catabolism ackA med Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized) 59% 95% 406 phosphoribosylglycinamide formyltransferase monomer 60% 418.3
L-threonine catabolism ackA med Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized) 59% 95% 406 phosphoribosylglycinamide formyltransferase monomer 60% 418.3
thymidine catabolism ackA med Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized) 59% 95% 406 phosphoribosylglycinamide formyltransferase monomer 60% 418.3
L-tryptophan catabolism ackA med Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized) 59% 95% 406 phosphoribosylglycinamide formyltransferase monomer 60% 418.3

Sequence Analysis Tools

View RR42_RS22745 at FitnessBrowser

PaperBLAST (search for papers about homologs of this protein)

Search CDD (the Conserved Domains Database, which includes COG and superfam)

Search PFam (including for weak hits, up to E = 1)

Predict protein localization: PSORTb (Gram negative bacteria)

Predict transmembrane helices: TMHMM

Check the SEED with FIGfam search

Fitness BLAST: loading...

Sequence

MLLGSGELGKEVLIALQRLGVETIAVDRYADAPGQQVAHHARTISMSDPDQLKALIEAEK
PDLVVPEIEAIATQMLETLEAAGVVRVIPTARAARLTMDREGIRRLAAETLGVPTSPYKF
CDSLEELQAAIDGGIGYPCVVKPVMSSSGKGQSKIDGPADVKAAWDYAMAGGRVSHGRVI
VEGFIDFDYEITLLTVRAIGADGQVETQFCEPIGHVQVSGDYVESWQPHPMHPAALQKSQ
QIAQAVTANLGGQGLFGVELFVKGEQVWFSEVSPRPHDTGMVTMITQWQNEFELHARAIL
GLPVSTALKSPGASAVIYGGVDAKGVVFDGVDEALRVPQTELRLFGKPESFTKRRMGVAL
AYDADVEAARVRAKDAAGRVKPRVAG

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer. Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory